
1/19

ESP32 Save Data Permanently using Preferences
Library

randomnerdtutorials.com/esp32-save-data-permanently-preferences

This guide shows how to save data permanently on the ESP32 flash memory using the
Preferences.h library. The data held in the flash memory persists across resets or power
failures. Using the Preferences.h library is useful to save data like network credentials,
API keys, threshold values, or even the last state of a GPIO. You’ll learn how to save and
read data from flash memory.

In this tutorial, we’ll cover the following topics:

Preferences.h Library

In a previous tutorial, we recommended using the EEPROM library to save data on flash
memory. However, the EEPROM library is deprecated in favor of the Preferences.h
library. This library is “installed” automatically when you install the ESP32 boards in your
Arduino IDE.

The Preferences.h library is preferably used to store variable values through key:value
pairs. Saving data permanently can be important to:

remember the last state of a variable;
save settings;
save how many times an appliance was activated;
or any other data type you need to save permanently.

https://randomnerdtutorials.com/esp32-save-data-permanently-preferences/
https://randomnerdtutorials.com/esp32-flash-memory/

2/19

If, instead of variables, you need to save files on the ESP32, we recommend using the
filesystem (SPIFFS) instead. To learn how to save files in the ESP32 filesystem, you can
read one of the following tutorials:

Save Data Using Preferences.h Library

The data saved using preferences is structured like this:

namespace {
 key:value
}

What is this?
 Report Ad

You can save different keys on the same namespace, for example:

namespace {
 key1: value1
 key2: value2
}

In a practical example, this configuration could be used to save your network credentials:

credentials {
 ssid: "your_ssid"
 pass: "your_pass"
}

In the preceding example, credentials is the namespace, and ssid and pass are the keys.

You can also have multiple namespaces with the same key (but each key with its value):

namespace1{
 key:value1
}
namespace2{
 key:value2
}

When using the Preferences.h library, you should define the data type you want to save.
Later, if you want to read that data, you must know the saved data type. In other words,
the data type of writing and reading should be the same.

You can save the following data types using Preferences.h: char, Uchar, short, Ushort, int,
Uint, long, Ulong, long64, Ulong64, float, double, bool, string and bytes.

For more information, you can access the Preferences.cpp file here.

Preferences.h Library Useful Functions

To use the Preferences.h library to store data, first you need to include it in your sketch:

https://www.mediavine.com/?utm_source=mediavine%7C&utm_medium=ad&utm_campaign=logo
https://github.com/espressif/arduino-esp32/blob/master/libraries/Preferences/src/Preferences.cpp

3/19

#include <Preferences.h>

Then, you must initiate an instance of the Preferences library. You can call it preferences,
for example:

Preferences preferences;

After this, you can use the following methods to handle data using the Preferences.h
library.

Start Preferences

The begin() method opens a “storage space” with a defined namespace. The false
argument means that we’ll use it in read/write mode. Use true to open or create the
namespace in read-only mode.

preferences.begin("my-app", false);

In this case, the namespace name is my-app. Namespace name is limited to 15
characters.

Clear Preferences

Use clear() to clear all preferences under the opened namespace (it doesn’t delete the
namespace):

preferences.clear();

Remove Key

Remove a key from the opened namespace:

preferences.remove(key);

Close Preferences

Use the end() method to close the preferences under the opened namespace:

preferences.end();

Put a Key Value (Save a value)

You should use different methods depending on the variable type you want to save.

4/19

Char putChar(const char* key, int8_t value)

Unsigned Char putUChar(const char* key, int8_t value)

Short putShort(const char* key, int16_t value)

Unsigned Short putUShort(const char* key, uint16_t value)

Int putInt(const char* key, int32_t value)

Unsigned Int putUInt(const char* key, uint32_t value)

Long putLong(const char* key, int32_t value)

Unsigned Long putULong(const char* key, uint32_t value)

Long64 putLong64(const char* key, int64_t value)

Unsigned Long64 putULong64(const char* key, uint64_t value)

Float putFloat(const char* key, const float_t value)

Double putDouble(const char* key, const double_t value)

Bool putBool(const char* key, const bool value)

String putString(const char* key, const String value)

Bytes putBytes(const char* key, const void* value, size_t len)

Get a Key Value (Read Value)

Similarly, you should use different methods depending on the variable type you want to
get.

5/19

Char getChar(const char* key, const int8_t defaultValue)

Unsigned Char getUChar(const char* key, const uint8_t defaultValue)

Short getShort(const char* key, const int16_t defaultValue

Unsigned Short getUShort(const char* key, const uint16_t defaultValue)

Int getInt(const char* key, const int32_t defaultValue)

Unsigned Int getUInt(const char* key, const uint32_t defaultValue)

Long getLong(const char* key, const int32_t defaultValue)

Unsigned Long getULong(const char* key, const uint32_t defaultValue)

Long64 getLong64(const char* key, const int64_t defaultValue)

Unsigned Long64 gettULong64(const char* key, const uint64_t defaultValue)

Float getFloat(const char* key, const float_t defaultValue)

Double getDouble(const char* key, const double_t defaultValue)

Bool getBool(const char* key, const bool defaultValue)

String getString(const char* key, const String defaultValue)

String getString(const char* key, char* value, const size_t maxLen)

Bytes getBytes(const char* key, void * buf, size_t maxLen)

Remove a Namespace

In the Arduino implementation of Preferences, there is no method of completely removing
a namespace. As a result, over the course of several projects, the ESP32 non-volatile
storage (nvs) Preferences partition may become full. To completely erase and reformat
the NVS memory used by Preferences, create a sketch that contains:

#include <nvs_flash.h>

void setup() {
 nvs_flash_erase(); // erase the NVS partition and...
 nvs_flash_init(); // initialize the NVS partition.
 while(true);
}

void loop() {

}

You should download a new sketch to your board immediately after running the above, or
it will reformat the NVS partition every time it is powered up.

6/19

Preferences.h – Save key:value Pairs

For a simple example on how to save and get data using Preferences.h, in your Arduino
IDE, go to File > Examples > Preferences > StartCounter.

7/19

/*
ESP32 startup counter example with Preferences library.

This simple example demonstrates using the Preferences library to store how many
times the ESP32 module has booted.
The Preferences library is a wrapper around the Non-volatile storage on ESP32
processor.

created for arduino-esp32 09 Feb 2017 by Martin Sloup (Arcao)

Complete project details at https://RandomNerdTutorials.com/esp32-save-data-
permanently-preferences/
*/

#include <Preferences.h>

Preferences preferences;

void setup() {
 Serial.begin(115200);
 Serial.println();

 // Open Preferences with my-app namespace. Each application module, library, etc
 // has to use a namespace name to prevent key name collisions. We will open
storage in
 // RW-mode (second parameter has to be false).
 // Note: Namespace name is limited to 15 chars.
 preferences.begin("my-app", false);

 // Remove all preferences under the opened namespace
 //preferences.clear();

 // Or remove the counter key only
 //preferences.remove("counter");

 // Get the counter value, if the key does not exist, return a default value of 0
 // Note: Key name is limited to 15 chars.
 unsigned int counter = preferences.getUInt("counter", 0);

 // Increase counter by 1
 counter++;

 // Print the counter to Serial Monitor
 Serial.printf("Current counter value: %u\n", counter);

 // Store the counter to the Preferences
 preferences.putUInt("counter", counter);

 // Close the Preferences
 preferences.end();

 // Wait 10 seconds
 Serial.println("Restarting in 10 seconds...");
 delay(10000);

 // Restart ESP

8/19

 ESP.restart();
}

void loop() {

}

View raw code

This example increases a variable called counter between resets. This illustrates that the
ESP32 “remembers” the value even after a reset.

Upload the previous sketch to your ESP32 board. Open the Serial Monitor at a baud rate
of 115200 and press the on-board RST button. You should see the counter variable
increasing between resets.

How the Code Works

This example uses the functions we’ve seen in the previous sections.

First, include the Preferences.h library.

#include <Preferences.h>

Then, create an instance of the library called preferences.

Preferences preferences;

https://github.com/RuiSantosdotme/Random-Nerd-Tutorials/raw/master/Projects/ESP32/Preferences/ESP32_StartCounter.ino

9/19

In the setup(), initialize the Serial Monitor at a baud rate of 115200.

Serial.begin(115200);

Create a “storage space” in the flash memory called my-app in read/write mode. You can
give it any other name.

preferences.begin("my-app", false);

Get the value of the counter key saved on preferences. If it doesn’t find any value, it
returns 0 by default (which happens when this code runs for the first time).

unsigned int counter = preferences.getUInt("counter", 0);

The counter variable is increased one unit every time the ESP runs:

counter++;

Print the value of the counter variable:

Serial.printf("Current counter value: %u\n", counter);

Store the new value on the “counter” key:

preferences.putUInt("counter", counter);

Close the Preferences.

preferences.end();

Finally, restart the ESP32 board:

ESP.restart();

ESP32 – Save/Read Network Credentials using the Preferences.h
Library

The Preferences.h library is many times used to save your network credentials
permanently on the flash memory. This way, you don’t have to hard code the credentials
in every sketch that involves connecting the ESP32 to the internet.

In this section, we’ll show you two simple sketches that might be useful in your projects:

To learn more about ESP32 Wi-Fi related functions, read the following article:

ESP32 Useful Wi-Fi Library Functions (Arduino IDE)

Save Network Credentials using Preferences.h

The following sketch saves your network credentials permanently on the ESP32 flash
memory using Preferences.h.

https://randomnerdtutorials.com/esp32-useful-wi-fi-functions-arduino/

10/19

/*
 Rui Santos
 Complete project details at https://RandomNerdTutorials.com/esp32-save-data-
permanently-preferences/

 Permission is hereby granted, free of charge, to any person obtaining a copy
 of this software and associated documentation files.

 The above copyright notice and this permission notice shall be included in all
 copies or substantial portions of the Software.
*/

#include <Preferences.h>

Preferences preferences;

const char* ssid = "REPLACE_WITH_YOUR_SSID";
const char* password = "REPLACE_WITH_YOUR_PASSWORD";

void setup() {
 Serial.begin(115200);
 Serial.println();

 preferences.begin("credentials", false);
 preferences.putString("ssid", ssid);
 preferences.putString("password", password);

 Serial.println("Network Credentials Saved using Preferences");

 preferences.end();
}

void loop() {

}

View raw code

Don’t forget to insert your network credentials in the following variables:

const char* ssid = "REPLACE_WITH_YOUR_SSID";
const char* password = "REPLACE_WITH_YOUR_PASSWORD";

How the Code Works

Let’s take a quick look at the relevant parts of the code for this example.

In the setup(), create a new storage space on the flash memory with the credentials
namespace.

preferences.begin("credentials", false);

Then, create a key called ssid that saves your SSID value (ssid variable) – use the
putString() method.

https://github.com/RuiSantosdotme/Random-Nerd-Tutorials/raw/master/Projects/ESP32/Preferences/ESP32_Save_Credentials.ino

11/19

preferences.putString("ssid", ssid);

Add another key called password to save the password value (password variable):

preferences.putString("password", password);

So, your data is structured in this way:

credentials{
 ssid: your_ssid
 password: your_password
}

Upload the code to your board and this is what you should get on the Serial Monitor:

In the following example, we’ll show you how to read the network credentials from
preferences and use them to connect the ESP32 to your network.

Connect to Wi-Fi with Network Credentials Saved on Preferences

The following sketch gets the network credentials’ values and connects to your network
using those credentials.

12/19

/*
 Rui Santos
 Complete project details at https://RandomNerdTutorials.com/esp32-save-data-
permanently-preferences/

 Permission is hereby granted, free of charge, to any person obtaining a copy
 of this software and associated documentation files.

 The above copyright notice and this permission notice shall be included in all
 copies or substantial portions of the Software.
*/

#include <Preferences.h>
#include "WiFi.h"

Preferences preferences;

String ssid;
String password;

void setup() {
 Serial.begin(115200);
 Serial.println();

 preferences.begin("credentials", false);

 ssid = preferences.getString("ssid", "");
 password = preferences.getString("password", "");

 if (ssid == "" || password == ""){
 Serial.println("No values saved for ssid or password");
 }
 else {
 // Connect to Wi-Fi
 WiFi.mode(WIFI_STA);
 WiFi.begin(ssid.c_str(), password.c_str());
 Serial.print("Connecting to WiFi ..");
 while (WiFi.status() != WL_CONNECTED) {
 Serial.print('.');
 delay(1000);
 }
 Serial.println(WiFi.localIP());
 }
}

void loop() {
 // put your main code here, to run repeatedly:
}

View raw code

How the Code Works

Let’s take a quick look at the relevant parts of the code for this example.

Open the credentials namespace:

https://github.com/RuiSantosdotme/Random-Nerd-Tutorials/raw/master/Projects/ESP32/Preferences/ESP32_Connect_WiFi_Preferences.ino

13/19

preferences.begin("credentials", false);

What is this?
 Report Ad

Get the SSID and password values using the getString() method. You need to use the key
name that you used to save the variables, in this case, ssid and password keys:

ssid = preferences.getString("ssid", "");
password = preferences.getString("password", "");

As a second argument to the getString() function, we passed an empty String. This is the
returned value in case there aren’t ssid or password keys saved on preferences.

If that’s the case, we print a message indicating that there aren’t any saved values:

if (ssid == "" || password == ""){
 Serial.println("No values saved for ssid or password");
}

Otherwise, we connect to Wi-Fi using the SSID and password saved on preferences.

else {
 // Connect to Wi-Fi
 WiFi.mode(WIFI_STA);
 WiFi.begin(ssid.c_str(), password.c_str());
 Serial.print("Connecting to WiFi ..");
 while (WiFi.status() != WL_CONNECTED) {
 Serial.print('.');
 delay(1000);
 }
 Serial.println(WiFi.localIP());
}

Upload this code to your board after the previous one (to ensure that you have the
credentials saved). If everything goes as expected, this is what you should get on your
Serial Monitor.

https://www.mediavine.com/?utm_source=mediavine%7C&utm_medium=ad&utm_campaign=logo

14/19

Remember Last GPIO State After RESET

Another application of the Preferences.h library is to save the last state of an output. For
example, imagine the following scenario:

1. You’re controlling an output with the ESP32;
2. You set your output to turn on;
3. The ESP32 suddenly loses power;
4. When the power comes back on, the output stays off – because it didn’t keep its last

state.

You don’t want this to happen. You want the ESP32 to remember what was happening
before losing power and return to the last state.

15/19

To solve this problem, you can save the output’s state in the flash memory. Then, you
need to add a condition at the beginning of your sketch to check the last output state and
turn it on or off accordingly.

The following figure shows what we’re going to do:

We’ll show you an example using an LED and a pushbutton. The pushbutton controls the
LED state. The LED keeps its state between resets. This means that if the LED is lit when
you remove power, it will be lit when it gets powered again.

Schematic Diagram

Wire a pushbutton and an LED to the ESP32 as shown in the following schematic
diagram.

Recommended reading: ESP32 Pinout Reference: Which GPIO pins should you use?

https://randomnerdtutorials.com/esp32-pinout-reference-gpios/

16/19

Code

This is a debounce code that changes the LED state every time you press the
pushbutton. But there’s something special about this code – it remembers the last LED
state, even after resetting or removing power from the ESP32. This is possible because
we save the led state on Preferences whenever it changes.

17/19

/*
 Rui Santos
 Complete project details at https://RandomNerdTutorials.com/esp32-save-data-
permanently-preferences/

 Permission is hereby granted, free of charge, to any person obtaining a copy
 of this software and associated documentation files.

 The above copyright notice and this permission notice shall be included in all
 copies or substantial portions of the Software.
*/

#include <Preferences.h>

Preferences preferences;

const int buttonPin = 4;
const int ledPin = 5;

bool ledState;
bool buttonState;
int lastButtonState = LOW;

unsigned long lastDebounceTime = 0; // the last time the output pin was toggled
unsigned long debounceDelay = 50; // the debounce time; increase if the output
flickers

void setup() {
 Serial.begin(115200);

 //Create a namespace called "gpio"
 preferences.begin("gpio", false);

 pinMode(buttonPin, INPUT);
 pinMode(ledPin, OUTPUT);

 // read the last LED state from flash memory
 ledState = preferences.getBool("state", false);
 Serial.printf("LED state before reset: %d \n", ledState);
 // set the LED to the last stored state
 digitalWrite(ledPin, ledState);
}

void loop() {
 int reading = digitalRead(buttonPin);

 if (reading != lastButtonState) {
 lastDebounceTime = millis();
 }
 if ((millis() - lastDebounceTime) > debounceDelay) {
 if (reading != buttonState) {
 buttonState = reading;
 if (buttonState == HIGH) {
 ledState = !ledState;
 }
 }

18/19

 }
 lastButtonState = reading;
 if (digitalRead(ledPin)!= ledState) {
 Serial.println("State changed");
 // change the LED state
 digitalWrite(ledPin, ledState);

 // save the LED state in flash memory
 preferences.putBool("state", ledState);

 Serial.printf("State saved: %d \n", ledState);
 }
}

View raw code

How the Code Works

Let’s take a quick look at the relevant parts of code for this example.

In the setup(), start by creating a section in the flash memory to save the GPIO state. In
this example, we’ve called it gpio.

preferences.begin("gpio", false);

Get the GPIO state saved on Preferences on the state key. It is a boolean variable, so
use the getBool() function. If there isn’t any state key yet (which happens when the
ESP32 first runs), return false (the LED will be off).

ledState = preferences.getBool("state", false);

Print the state and set the LED to the right state:

Serial.printf("LED state before reset: %d \n", ledState);
// set the LED to the last stored state
digitalWrite(ledPin, ledState);

Finally, in the loop() update the state key on Preferences whenever there’s a change.

// save the LED state in flash memory
preferences.putBool("state", ledState);

Serial.printf("State saved: %d \n", ledState);

Demonstration

Upload the code to your board and wire the circuit. Open the Serial Monitor at a baud rate
of 115200 and press the on-board RST button.

Press the pushbutton to change the LED state and then remove power or press the RST
button.

https://github.com/RuiSantosdotme/Random-Nerd-Tutorials/raw/master/Projects/ESP32/Preferences/ESP32_Remember_Last_State.ino

19/19

When the ESP32 restarts, it will read the last state saved on Preferences and set the LED
to that state. It also prints a message on the Serial Monitor whenever there’s a change on
the GPIO state.

